Big Data Itself is Being Monetized

- Executives see the short path from data insights to revenue and profit
 - Big data often illuminates behavior
 - Analytic sandbox results taken directly to management
- Data is becoming an asset on the balance sheet
- Value big data by
 - cost to produce, including new technologies and storage
 - cost to replace if it is lost, perhaps impossible
 - revenue & profit opportunity, often immediate/ephemeral
 - revenue or profit loss if insights fall into competitors hands
Seismic Shifts in the Data Warehouse

- Low latency operational data mixed with history
 - New sources, new users
 - Mixed workloads, micro-batch or streaming loads

- Customer behavior data
 - Web traffic, need to analyze sessions
 - Significant integration: 50+ sources common

- Analysis of big data
 - Many new data formats and data types: social media; device sensors
 - Huge distributed data sets: full data set scans
 - Non-relational processing: complex branching & procedural processing

- Mission unchanged: Publish the Right Data

Extreme Integration: Tackling Data Silos at Cisco

Busting Silos with Enterprise Social Graph

Big Data Analytic Use Cases

- Behavior tracking
 - Search ranking
 - Ad tracking
 - Location and proximity tracking
 - Causal factor discovery
 - Social CRM
 - Share of voice, audience engagement, conversation reach, active advocates, advocate influence, advocacy impact, resolution rate, resolution time, satisfaction score, topic trends, sentiment ratio, and idea impact
 - Financial account fraud detection/intervention
 - System hacking detection/intervention
 - On line game gesture tracking

More Big Data Use Cases

- Non-numeric data and unique algorithms
 - Document similarity testing
 - Genomics analysis
 - Cohort group discovery
 - Satellite image comparison
 - CAT scan comparisons
 - Big science data collection

- Complex numeric data
 - Smart utility meters
 - Building sensors
 - In flight aircraft status

- Data bags – name/value pairs with ad hoc content
Houston: We Have a Problem

- The traditional pure relational data warehouse architecture can't handle ANY of these use cases.
- We need:
 - Non-scalar data: vectors, arrays, data bags, structured text, free text, images, waveforms
 - Iterative logic, complex branching, advanced statistics
 - Petabyte data sources loaded at gigabytes/second
 - Analysis in place across thousands of distributed processors, data often not in database format, full data scans often needed
 - Data loaded before structure is understood
 - Analysis while loading

Two Architectures to the Rescue: Zero Sum or Hybrid Coexistence?

- Extended relational
 - Extend the current formidable RDBMS legacy
 - Add features/functions to address big data analytics

- MapReduce/Hadoop
 - Build new architecture for big data analytics
 - Open source top level Apache project
 - Thousands of participants
Existing RDBMS Based Data Warehouse

Extended Relational Data Warehouse with Big Data Additions
MapReduce/Hadoop

Figure 2.3 from Tom White’s book, Hadoop, The Definitive Guide, 2nd Edition, (O’Reilly, 2010)

Hadoop Distributed File System (HDFS)

- HDFS is the distributed file system that supports a number of Hadoop projects:
 - Low level MapReduce programming in Java, Ruby, Python, C++
 - High level “MapReduce compilers” used for DW projects
 - Pig – “Pig Latin” procedural interface, leverages DBMS skills
 - Hive – SQL interface, described as a data warehouse
 - Hbase – open source, non-relational, column oriented database running directly on HDFS
Hybrid Possibilities

- Iterative Processing, Complex Logic, Non Scalar Sources in MapReduce/Hadoop (HDFS)
- Structured Querying in Relational DBMS EDW
- Standard BI Tools

Comparing the Two Architectures

- **Relational DBMSs**
 - Proprietary, mostly
 - Expensive
 - Data requires structuring
 - Great for speedy indexed lookups
 - Deep support for relational semantic
 - Indirect support for complex data structures
 - Indirect support for iteration, complex branching
 - Deep support for transaction processing

- **MapReduce/Hadoop**
 - Open source
 - Less expensive
 - Data does not require structuring
 - Great for massive full data scans
 - Indirect support for relational semantics, e.g. Hive
 - Deep support for complex data structures
 - Deep support for iteration, complex branching
 - Little or no support for transaction processing
Data Warehouse Disruptions

- The rise of the independent analyst
 - "newly discovered patterns have the most disruptive potential, and insights from them lead to the highest returns on investment."
- Sandboxes
- Demand for low latency
- Thirst for exquisite detail
- Light touch data waits for relevance to be exposed
- Simple analysis of all the data trumps sophisticated analysis of some of the data
- Declare the structures at query time, not load time

Whither the Data Warehouse?

- Corral and embrace the big data analysts
 - Analysts and IT must meet each other half way
 - Insist on using shared data warehouse resources
 - Conformed dimensions → integrate now, avoid data silos!
 - Virtualized data sets → quick prototypes, migrate to prod.
- Build a cross department analytic community with IT partnership
- Ditch the waterfall approach, go agile
 - Led by business – but sophistication required
 - Closely spaced deliverables, midcourse corrections
The Kimball Group Resource

- www.kimballgroup.com
- Best selling data warehouse books
 NEW BOOK! The Kimball Group Reader
- In depth data warehouse classes taught by primary authors
 - Dimensional modeling (Ralph/Margy)
 - Data warehouse lifecycle (Margy/Warren)
 - ETL architecture (Ralph/Bob)
- Dimensional design reviews and consulting by Kimball Group principals
- Informatica White Papers on Integration, Data Quality, and Big Data Analytics