The World of BI is Changing

- New data sources
- New user groups
- New forms of reporting and analytics
- Operational BI
- More agility required
 - Time-to-market
- TCO has to go down
Network of Databases (Labyrinth)

- Production databases
- Data staging area
- Operational data store
- Data warehouse
- Data marts
- Personal data stores

Data Virtualization

- Production application
- Reporting & analytics
- SOA

Data Virtualization Server
Summary of Previous Module

- Data virtualization leads to simplification of BI systems
- Data virtualization increases the agility of BI systems
- Data virtualization increases productivity, and improves maintenance

The Data Model

- Classic components of a data model
 - Structural elements - entity, relation, attribute, integrity rule
 - Definitions
 - Examples
- Data integration components of a data model
 - Transformation specifications
 - Cleansing specifications
 - Integration specifications
 - Aggregation specifications
Data Modeling Yesterday and Today

1. IT talks to user to understand information needs
2. IT creates and adapts data model (in isolation)
3. IT shows and explains data model to user
4. User gives feedback
5. IT goes back to drawing board and adapts data model
6. If not ok, go back to step 2
7. IT extends data model with integration specifications
8. Specialist implements and changes integration specifications
9. IT checks results (by looking at data)
10. If results not ok, go back to step 8
11. IT shows and explains data examples to user
12. If results not ok, go back to step 8
13. Done!

Problems and Challenges

- IT not always an expert of the business area
- IT and users speak different languages
- Data model too abstract for users
- Time lost explaining to IT what information needs are
- Data model ends up at the wall
- Plans go out the window
 - "No battle plan survives contact with the enemy"
- Much time lost waiting
- Data model specifications end up everywhere
Implementation of Data Model

The View From the Applications
The Virtual Table

Virtual table definition

Mapping consisting of row selections, column selections, column concatenations and transformations, column and table name changes, and aggregations
Wrapper with technical specifications, such as connection, column names, data types, keys, statistics on population, and nulls
Source table
Data source

Data virtualization server

Virtual table accessing the virtual table

Data consumer accessing the virtual table

Virtual Tables and Physical Tables

Virtual table + mapping

Wrapper + source table

Source table
Nesting Virtual Tables

The Mapping of a Virtual Table
Sharing Common Specifications

Virtual table V_2 with unique specifications

Virtual table V_3 with unique specifications

Virtual table V_1 with common specifications

Source table

Examples of Common Specifications

- Data integration specifications
 - Homogeneous and heterogeneous

- Transformations
 - Standardization of structure and values

- Cleansing operations
 - From simple to complex

- Aggregations
(1) Bottom-Up Modeling

- From stored tables to virtual tables
- Design based on data available in existing data sources (less focus on the requirements of reports)
- Fits a more classic approach
- Much focus on sharing common specifications
(2) Top-Down Modeling

- From virtual tables to stored tables
- Design based on requirements of reports
- Fits self-service BI and an agile approach
- However, what about sharing common specifications?

Modeling Virtual Tables

Unbound virtual table
(3) Inside-Out Modeling

- From virtual tables with common specifications to stored tables and to reports
- Central virtual tables form a *canonical data model*
- Much focus on sharing common specifications
- Fits an agile and a classic approach
- High level of independence between reports and data sources

Testing by Example

Virtual contents of virtual table
Early and Iterative Participation by Analyst

The Classic Approach

- Production databases
- Staging area
- Data warehouse
- Data marts
- Personal data stores

- Data model specifications are implemented independent of the data integration specifications
- Data model and integration specifications dispersed
- The business user not involved - minimal interaction
- Much time lost waiting
- Testing the specifications is time- and resource consuming
The Data Virtualization Approach

- Data modeling becomes more collaborative and iterative
- More agile approach
- The data model becomes the reusable and flexible foundation for any BI project
- The data model is part of the running system (not a picture on a wall)
- IT can select different data modeling approaches
- Centralized implementation of common integration specifications – higher level of reuse
- No time lost waiting

Five Modules

- Module 1: How to Architect for Agility and Productivity in Your Projects
- Module 2: Best Practices for Developing a Reusable and Flexible Data Model
- Module 3: Best Practices for Real-Time Data Profiling and Data Quality
- Module 4: Best Practices for Ensuring Managed Self-Service BI
- Module 5: Best Practices for Scaling with Enterprise Needs
Rick F. van der Lans

Rick F. van der Lans is an independent consultant, lecturer, and author. He specializes in data warehousing, business intelligence, service oriented architectures, and database technology. He is managing director of R20/Consultancy B.V.. Rick has been involved in various projects in which SOA, data warehousing, and integration technology was applied.

Rick van der Lans is an internationally acclaimed lecturer. He has lectured professionally for the last twenty years in many of the European and Middle East countries, the USA, South America, and in Australia. He has been invited by several major software vendors to present keynote speeches.

He is the author of several books on computing, including his new Data Virtualization for Business Intelligence Systems. Some of these books are available in different languages. Books such as the popular Introduction to SQL is available in English, Dutch, Italian, Chinese, and German and is sold world wide. He also authored The SQL Guide to Ingres and SQL for MySQL Developers.

As author for BeyeNetwork.com, writer of whitepapers, as chairman for the annual European Data Warehouse and Business Intelligence Conference, and as columnist for a few IT magazines, he has close contacts with many vendors.

R20/Consultancy B.V. is located in The Hague, The Netherlands, www.r20.nl. You can get in touch with Rick via:

Email: rick@r20.nl
Twitter: @Rick_vanderlans
LinkedIn: http://www.linkedin.com/pub/rick-van-der-lans/9/207/223

Copyright © 1991 - 2012 R20/Consultancy B.V., The Hague, The Netherlands